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PREFACE

This work is a shortened version of my master's thesis [I] submitted in the Spring of 1979. The original text
covered several ancillary topics of which I was not satisfied with either the presentaion or technical content. I
had originally planned to complete these parts in a short time and produce an expanded version as a technical
report. Ibis tiask proved harder than I first realized. Consideration of many of these additional topics has led
to a gradual evolution of the ideas in directions that differ in emphasis and specific tcchnical detail from those
expressed here. I have decided it best to take what I felt was the stable core of the ideas and issue them at this
time.

The topics that have been removed include:

(1) Manipulative viewpoint inheritance, the placing of filters between viewpoints so that some subset of the
assertions will be inherited. This mechanism can make use of justifications on the assertions in a viewpoint to
control the filtering. More recently I have been thinking of generalizations of this concept in which the
contents of a viewpoint can be expressed as a function of the contents of its parents, not simply a subset. I
plan to develop this idea in the future.

(2) Use on parallel hardware. I had developed a scheme for implementing Ether on multiprocessors. Its only
purpose was to show that the broadcast primitive could be implemented on a multiprocessor system without
having to invoke a network broadcast. It was not well-developed and I thought it best to drop.

(3) Conjunctive Subgoals with Shared Variables. This is a very important topic that I will develop more
completely in a future paper.

In addition, I am currently developing with Hewitt [2] a paper on the relationship between the problem
solving philosophy embodied in Ether and the landmark works of modern philosophers of science such as
Popper, Lakatos, and Kuhn. We feel there is much similarity between the notions of conjecture and
refutation in science as expressed by Popper and the parallel execution of many activities including opponent
activities. I was largely unaware of this relationship when the work reported here was done.

The term viewpoint that is used in the present work replaces the term platform that I had originally used in my
thesis and in the paper describing Ether that appeared in IJCAI6.

* b C .J
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Chapter I Introduction

My interest is in studying possible uscs of parallel program architccturcs for die solution of problems in

artificial intelligence. What distinguishes this class of problems from others is tie volume of "nonessential"

computation that gets done. Programs spend the bulk of their time searching through spaces of facts and

mcthods for one that might possibly bc usefuI.J This search often takes place at many levels simultancously',

in determining whether a selected fact or method is useful may entail a vast search through a different

subspace of facts or methods. flow this is orchestrated within a program is usually referred to as its control

structure. The intent of a control structure is to avoid as Much of this search its possible, although a certain

amount of it seems necessary. 'M'ere have even been some researchers suggesting that it is not possible to

curtail this search very much, at least foe certain special cases of reasoning 13, 41, and have suggested solutions

involving vast amounts of parallel hardware that can decide many of these questions by use of sheer

computation power. While I don't wish to take exception to their conclusions, only leave these questions in

abeyance, this is not the position taken by the present work . The emphasis is not on "brute force" solutions,

but on techniques for gaining more programming flexibility and greater control over the problem at hand.

T'his work builds on various ideas in the problem solving literature and combines them with some new ideas

about parallel computation. The synthesis will be a new pattern -di rected invocation language known as

Ether. E-ther follows in the tradition of Planner in having a collection of assertions representing facts about

the world and procedural objects that interact with these facts via pattern matching.

Two important subcomponents of Ether are a language for talking about aciivifies and a hiearchy of

viewpoints for structuring data. The notion of an activity is intuitively similar to the i1otion of a process, that is

a locus of control with some purpose. It is not as rigid as the concept of a process as might be defined by

allusion to a Turing or Von Neumann machine model. The concept of process for these models can be

thought of as a totally ordered sequence of state changes to a tape or other kind of memory. This is not the

case with an activity. It may be the case that several assertions are broadcast (i.e. added to the database) or

* several procedural objects executed by one activity without there being any particular ordering between them.

The kinds of things that might become activities are "Do antecedent reasoning on the facts in the following

viewpoint" "Attempt to achieve the following goal," or simply "Run the following code." Activities are

objects that can be talked about through the Ether database and acted upon by special primitives. A kind of

thing one might do to an activity is to prevent its continued execution. This might be desirable if the purpose

* of the activity has already been accomplished. One might also change the rate at which an activity is working.

In Ether the host machine is thought of as 4 finite rcsourcd that has a certain (constant) amount of power.

j* Thc problem of search isn't the only distinguishing feature of artificial intelligence research. There are many serious issues of data or
"knowledge" representation that arc uniquc to the field. While many researchers toda) would consider these to be the only serious
concerns. I think this attitude has led to the creation of a numbhcr of sophisticated svstcms ror thc reprcsentabon of knowledge with nto
cear idcas on how to use them in programs. In contras( to this, we will be concerned only with questions of program organizatimt.



T'he power can be distributed amongst running activities in whatever way seems appropriate at the time. If

some newly discovered information suggests that one way of accomplishing a goal is more likely to succeed

than another, thc amount of processing powcr being used by the former activity can be increased to the

detriment of the other.

Many Al languages reason by creating and manipulating world models inside the machine. Context

mechanisms allow multiple inconsistent world models to reside in thc database concurrently. Often many of

the world models share much of their structure. Context mcchainisms make this economical by supporting an

inheritance between contexts. These mechanisms, as usually conceived, do not allow processing to happen in

more than one world model at a time. A generalization of the context idea is the viewpoint. Viewpoints have

an inheritance structure similar to contexts but unlike them, there is no restriction on the number of

viewpoints that may be available at one time -- all may be processed concurrently. Many of our examples

depend on the ability to build many incompatible but concurrently accessible world models.

Throughout this paper we will present a number of control structures that can be viewed as parallel
generalizations of well known techniques, such as forward and backward chaining, OR and AND subgoals,

depth first and breadth first search, and goal filtering. The parallel techniques tend to be more flexible.

One Facility of most other procedural deduction systems that Ether has chosen to leave behind is automatic

backtracking-, although useful in certain circumstances, the purpose of this work is to study what could be

accomplished by allowing the user's program to explicitly control the search. Even though backtracking is not

present, the system is set up so that the program is not committed to "believing" hypothetical assumptions

just because they were once made. Why these arc different ideas will become clear later on.

In this work I will not be concerned with the question of whether the (parallel) programs described are to be

run on a conventional sequential machine or a specially designed parallel machine. However, the language to

be described is designed so that an implementation on parallel hardware would require little revision of the

* language constructs. The arguments for parallel processing advanced are as relevant to conventional serial

machines as they are to more advanced parallel architictures.

The contribution of Ether can best be understood in a historical context. In Micro-Planner, many theorems

- could be specified for accomplishing some purpose. 'They were chosen non -deterministically by the

interpreter. 'Me inability of the user to order the application of methods made programs semantically clean

but led to grossly inefficient searches via the automatic backtracking mechanism. The Conniver language was

a procedural deduction system made to look and act more like a conventional programming language. Thei driving motivation for this was to curtail the needless search engendered by backtracking. The end result was
a system without a rich semantic model and thus the complexity barrier was reached very quickly. The

presece of explicit parallelism in Ether allows both goals to be achieved. I believe Ether programs to

maintain the clean semantic model of Micro-Planner while allowing search to be tightly controlled
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Chapter 11 Combinatorial Implosions

'i'lis chapter introduces a phcnomeno,. that is possible in parallel programming environments. When many

activities arc running concurrently in an. attempt to solve some problem, some activities can produce

inforination that obviate the need for others or help them solvc their problem morc quickly than if they were

run in isolation. We would not reap the benefits of this sharing of information in a sequential system because
the activities must be run in some order decided before this information has been produced. We will use the

term combinatorial implosion for this unpredictable and useful interaction between running activities.

Discussion of this phenomenon as a justification for parallel processing is curiously scant in tie literaturedt

The usual argument for parallel schemes is that problems can be broken into parts that are separately solved

on separate processors, thereby finishing faster than could have been accomplished on a single processor.

Combinatorial implosions, however, can occur just as readily on time shared sequential processors as on truly

parallel machines. The main example of this chapter is discussed assuming it will be run on a single

time-shared processor.

2.1 An example problem

This problem is excerpted from the PROTOSYSTEM-1 automatic programming system [6]. It is presented in

a somewhat stylized format that is functionaly identical to an a,'tual problem occurring in the design phase of

the automatic programming system.*

We are presented with a set of(boelean) predicates {PI. P2.  Pn} and a (boolcan) predicate 9Fi such that

9:) P1 V P2 V ... V Pn" The goal is to determine all sets S C {P1, P2. n}, such that J VP for
each Pk ES and for which there are no proper subsets R of S such that 9 D V Pk for each PkE R. In otherk

words we want to find the smallest subsets of {P1. P2.  Pn} that cover the predicate . Note that there can

be more than one such subset.

In order to simplify the following discussion we will make two definitions.

1. A tuple of predicates {Pi, Pi2 ... ' Pi} works if9DP. VP2 V ... V Pin.

2. A tuple of preoicates {Pi Pi2 . Pi n} is minima if there is no

S C {pill Pi2 .. . ' Pi )such that S works.

f A similar notion known as the accleration effect f5l was developed independently.
In PROTOSYSTFM-1 terminology the problem is one of generating driving datasetscandda:es..4[

-- -
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2.2 Sequential Solutions

S- In terms of the above definitions, we are looking for all subsets of the given set of predicates that work and are

tminimal. There are two algorithms that we, as programmers, might pick as solutions to this problem- they are

known as Top-Down and Bottom-Up. Descriptions of these algorithms follow.

2.2.1 "'op Down

Create a results-list, initially null.

Top-lDown({P1 ' P2.  Pn})
1. if for every j, where I <j <n,{P1.... P j + 1' Pn} does not work add

[PI' P2 .. P} to the results-list.

2. else execute Top-Down ({P1 .  j+i. Pnl) for each of the

{P1 .  Pj + 1. Pn that works.

3. Return the results-list as the answer when all computation is completed.

2.2.2 IBottom Up

Create a results-list, initially null, and a counter k, initially 1.

Bottom-Up ({PI, P2 - . P}) =

1. Generate all k-tuples of the Pi and remove all of the k-tuples that contain a proper

subset that is on the results-list. Check each of these to see if they work, and if they
do add them to the results-list.

2. Increment k and iterate until k = n, then stop and return the results-list.

Both algorithms arc optimal in the sense that no test for workingness (a very expensive operation) is ever

performed that could be logically eliminated; no algorithm could be created that will always require fewer

tests than either of these.
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2.3 Parallel Algorithms

2.3.1 llaralkl.\lorithm I

rhe two algorithms have very different characteristics. Top-Down will work faster if the minimal working

subsets are large with respect to n, and Bottom-Up will work faster when they are relatively small. There is no

way to decide which one will be fastest for a given problem short of running one of them. 'rhe variability is

sufficiently great that we could produce a faster algorithm on sequential machine by running them

concurrently with one another by time-sharing and waiting for die first to finish with the result. This is one

(albeit weak) form of combinatorial implosion. '[he timing variability between methods need only be high
enough so that on the average twice the time of the fastest to finish is less that the average speeds of both.

2.3.2 Parallel Algorithm 1I

In this section we will improve on the algorithm of the preceding section by allowing the two subactivities to
pass each other information. We note two facts:

1. If {Pil, pi2... Pin} does not work, then any subset of it will not work.

2. If {Pi , P ....Pi, Pn } works then any superset of {Pill Pi 2,.. Pin} will work and

not be minimal.

As Top-Down is running, it produces as computational by-products numerous sets that don't work and in
order from largest to smallest. By property I above it can be immediately deduced that all subsets of these

sets will not work and these can be eliminated from immediate consideration. 'his fact is of course implicit in

the design of the Top-Down algorithm, but can be of great use to Bottom-Up. As 'Fop-Down discovers sets
that don't work they can be passed to Bottom-Up and used to prune many sets from possible consideration. A
byproduct of the running of Bottom-Up is the enumeration of sets (in increasing order) that work. By
property 2 these can be used to prune all supersets of the set from consideration by Top-Down.

The parallel algorithm we envision has these two activities running concurrently and passing results to each
other as they are discovered. A block diagram is shown in figure 1. Arrows in the figure show conceptual

flow of information. As a process discovers new sets that it should report to the other process, it broadcasts

this fact. Whenever a fact is learned that eliminates the need for what the activity is doing at the moment its
work is halted and a relevant one is begun. This algorithm is easy to express in Ether, although difficult or

awkward using other parallel programming methodologies.

V 1



Fig. 1. Block IDiagrain for Pairallel Imnplementationt
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Chapter III Basic Ideas

3.1 Pattern Directed Invocation

The principle feature of pattern-directed invocation languages are a large, continually changing collection of

assertions that represent facts of importance to the problem solver and some means of procedure invocation

based on pattern matching involving this collection of assertions. In Ether,t these define the two principle

operations: broadcast and when.

We choose the term broadcast for the operation that adds new assertions to the ones already known. The

reason we are using the term broadcast (and avoiding the term database) is to supply a certain conceptual

model. A database is often thought of as a data structure in which items are inserted in some definite order.

It might matter to the overall behavior of the system in what order two assertions were entered. The database

itself often has to ensure its own consistency. If this database is used as a joint repository of information used

by many activities running in parallel there are many opportunities for unforseen and undesirable interactions

to occur between these running activities. The standard conceptual model of a database is at too low a level.

The pattern-invoked procedures, called sprites, are thought of as watching for broadcast assertions matching

their patterns. If one of them is invoked it can broadcast new assertions to other sprites or create new sprites.

3.2 What Sprites Are

Sprites consist of two parts, a pattern and a body. They watch for assertions to be broadcast that match their

patterns. If a sprite's pattern successfully matches an assertion, the body of the sprite is executed in the

environment of the match. Sprite bodies principally contain two kinds of constructs: more sprites that are

activated and commands to broadcast new assertions to the collection of sprites.*

An example of a sprite that serves the function of an antecedent theorem is:

(when (ON -x my) When a block is on another block
(when (OVER y -2) ;and the second block s over a thiru

(broadcast (OVER x z)))) ;assert the first block is over the third

The pattern of this sprite will match any assertion with three elements that has ON in the first position. When

this sprite is triggered it creates a new sprite (as the sole action of executing its body). If the assertion

(ON A o) is broadcast, this sprite will create a new one of the rorm:

t "Ether" (according to many noted 19th century physicist%) is the name of the medium through which all infomiation travels at finite
speed.
t In the current implementation the bodies of sprites are evaluated by the lisp interpreter in the lexical environment of pattern

matching. Broadcast and when are ordinary Iisp functions. Other Lisp functions, such as cond, can also be used.

,1n
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(when (OVER B -z) ;When B is known to be over a certain block,
(broadcast (OVER A a))) ;assert A is over that block

If an assertion of the form (OVER B C) is also broadcast, the action of this sprite will be to broadcast

(OVER A C).

Nested sprites, are common enough to motivate a simpler notation. The patterns are all collected together

into one list delimited by curly brackets. For example, the form:

(when ((ON -x ")
(OVER y -z))

(broadcast (OVER x z)))

is functionally equivalent to the one above.

Sprites obey an important property known as coinmulaliviy. When there is a sprite S that is capable of

triggering on an assertion A, the behavior of the system is invariant with respect to the order of creation of S

and A. It does not matter if the sprite was created before the assertion or vice versa for the sprite to trigger.

The Ether collection of assertions satisfy another important property known as nionotonicity. Once an
assertion has been broadcast it can never be erased. The modularity of Ether code depends upon these

properties.

3.3 Explicit Goal Assertions

Many pattern-directed invocation languages have specific syntactic constructs for doing antecedent and

consequent reasoning (e.g. Planner's antecedent and consequent "theorems"). It was later realized that only
one pattern-directed invocation facility was needed [7, 8, 91. Sprites can serve as antecedent theorems as was

shown above. Assertions that represent goals can be marked as such so that the same syntactic construct can
be used for consequent as well as antecedent reasoning. dcKlecr et. al. [9] describes a language using explicit

control assertions closely resembling the subset of Ether developed in this chapter. A natural deduction logic

that bears a certain resemblance is described in Kalish and Montague [101.

A simple consequent theorem embedded in a sprite is shown in figure 2.

Fig. 2, Simple Conscquent Sprite

(when (GOAL (MAMMAL ux)) ;When there is a goal of demonstrating x is a mamma
(broadcast (GOAL (HUMAN x))) :Try to show x is human.
(when (HUMAN x) ;lf you show x is human,

(broadcast (MAMMAL x)))) ;broadcast that x is a mammal

This sprite, when invoked by a goal assertion, broadcasts a new goal assertion that can be picked up by
(possibly several) consequent reasoning sprites and worked on in parallel. A sprite is created that watches for

an assertions to be broadcast that watches for the new subgoal goal to be satisfied. If and when this assertion
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appears the result (HUmAN x) is broadcast. Sprites of this kind, that watch for results of independent activity,

arc called continuation sprites because of their similarity to continuations employed in other programming

languages.

There are many advantages in using explicit goal assertions. Thcy allow the system to reason about its goals

(possibly concurrently with working on them.) There are at least four reasons why a procedural deduction

system should be able to reason about its goals.

1. It is often useful for a system to determine consequents of its goals in order to evaluate the plausibility of

the goals themselves. If the system can know what its goals are, then it can reason about the possible

applicability of techniques aimed at accomplishing these goals. 'Ibis idea will be developed extensively in

section 5.3.

2. Moore [11 presents another use of the ability to have access to the goal structure. He demonstrates

numerous examples of situations in which there is a goal with two OR subgoals. It is shown (because of the

existence of these two subgoals) that there exists a third subgoal, the successful solution of which will signify a

solution to the main goal. His examples of this are all of one form that might be characterized as the dual of

resolution. (He calls it "restricted goal resolution".) If one subgoal is of the form:

PAQ 1 A ... AQ i

and the second is of the form:

P'A R1 A... A R

where P and P' unify then it is sufficient to solve the goal: t

Q'j A ... A Q'i A R', A ... A R' i

where the individual propositions are instantiated by variable bindings resulting from the unification of P and

P'. It is based on the observation that it does not matter to the main goal which of P' and -P is achieved.

Since one of P' and -P will be true, and all other prerequisites of the respective OR subgoals are achieved,

one of them will certainly be satisfied.

While this example seems somewhat artificial, (although Moore does develop the idea extensively) other,

more semantically meaningful examples involving, for instance, planning can be imagined. Suppose you

want to do two things (have two goals): (1) Get money at the bank and (2) Buy a book. Let's say the bank has

two branches, one in Kendall Square and one in Harvard Square, you are nearer Kendall Square than

Harvard Square, but there are book stores only in Harvard Square. To deduce that you should go to the

t In our notation, the and R'i are the terms Qi and Ri with variables replaced by constants resulting from the unification of P and P'.

-. jj
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bank's branch in Harvard Square the reasoning system must reason about its goals.

3. A more pragmatic, though no less important, reason for having explicit goal assertions is as an easy

technique for producing arbitrarily parallel processing on conventional machines. Conventional Lisp

interpreters contain a significant control state- there is a non-negligiblc amount of time required to switch

processes. If goals are created in a manner similar to the calling of functions in Lisp, a great deal of effort

must be expended to allow several goals to work in parallel. By not mimicing this aspect of the host language,

large-scale parallel development becomes possible.

4. A problem that can arise in (particularly, but not exclusively, parallel problem solving systems is one of

ensuring that effort is not duplicated unnecessarily. If two distinct goal activities broadcast identical subgoals

we would like them to initiate only one new activity, not two. This follows automatically from the invisibility

of multiple broadcasts of a single assertion. " This is similar to a well-known difficulty with recursive

programming as can be seen in a recursive definition of the Fibonacci function. A Lisp definition of

Fibonacci is:

(defun F1IO (n)
(cond

((-n 0) 0)
((-n 1) 1)
(t (+ (e1r0 (- n 1))

(F1BO (- n 2))))))

Calling (FiBO e), for example, will require (F18o 2) to be evaluated five separate times, and this count

increases exponentially with its argument. An Ether implementation of this same function is shown in figure

3.

Fig. 3. Ether Implementation of Fibonacci

(when (COMPUTE (FIBO -n)) :If asked to compute (flbo n)
(cond

((0 n O) ;jf n is 0.
(broadcast (IS (FIO 0) 0))) :broadcast the answer is 0.

((a n 1) ;If n is 1.
(broadcast (IS (FIBO 1) 1))) :broadcast the answer is 1.
(t (broadcast (COMPUTE (FIBO (- n 1)))) ;Otherwise compute (fAbo n-I).

(broadcast (COMPUTE (FIO (- a 2>))) ;and compute (fibo n-2).
(when ((IS (FIBO (- a 1)) a) :When .,ou have a value for (fibo n-I),

(IS (FIBO (- n 2) ob)) :and a value for (fibo n-2)
(broadcast (IS (FI30 n) <+ a b))))))) :broadcast their sum for (fibo n,)

Because this sprite will only respond to the assertion (COMPUTE (FIB0 2)) once, it will only compute the

answer once. Sequential problem solving systems can get around this problem because there is a guaranteed

sequencing between attempts to solve a goal. Each goal activity merely has to record that it worked on the

t Ether sprites will respond to an assertion only once regardless of the number of times it has been broadcat.

7 I-II- .-
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goal and what tie result was. A later attempt to achicve this goal first checks to see if this information was in

the database. The THGOAL primitive of Micro-Planner half solved this by first checking the database to see if

tile goal was present, apparently Micro-Planner repeatedly attempted failing branches.

A similar problem that we easily avoid is that of the infinite goal stack. If a goal attempts to set itself up as a

subgoal, work automatically stops at that point. This problem is much less serious one in parallel problem

solving systems compared with sequential systems executing a depth-first search where it can cause the system

to come to a grinding halt. In parallel systems an infinite goal stack only degrades the efficiency of the system.

Given the presence of goal assertions with explicit activities created to work on them in parallel, we now have

the capability to compare and contrast them as they work. As work progresses new partial results are achieved

that can enable the system to reapportion its resources. A simple example of this is a system attempting to

solve the goal (3x)(P(x) A Q(x)). The system in parallel attempts to find assignments to x that will make one

of the predicates P and Q true. If it succeeds in finding one such assignment (say P(al) then it should allocate

more resources to working on a derivation of Q(a). Similarly, if it discovers -'P(b), it should certainly stop

working on the goal of showing Q(b).

m

I.'.--. - -.
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Chapter IV Activities

4.1 Creating Activities for Goals

The simple consequent sprite developed in figure 2 on page 12 has one obvious problem; there is no way to

stop work on the subgoal when the main goal has been achieved. For example, if the original goal assertion

was (GOAL (MAMMAL FIOe)) and it had been achieved, i.e. (MAMMAL FIDO) was broadcast, there is no

mechanism that would prevent work contributing to the solution of (GOAL (HUMAN FIDO)) begun by the

consequent sprite from continuing. Our solution to this problem will be the introduction of tie concept of an

actviow. An activity is a locus of control with some purpose. We would like to create two activities, each

containing all work on each of the two subgoals. ille example in figure 2 is redone using activities as shown

in figure 4.

Fig. 4. Simple Consequent Sprite With Activities

(when (GOAL (MAMMAL -x)) -activity ;lf you want to show x is a mamma
(let ((subgoal (new-activity))) :Create a subgoal activity.

(broadcast (GOAL (HUMAN x)) subgoal) :Try to show x is human in this activity.
(when (HUMAN x) :If you show x is human

(broadcast (MAMMAL x))) :broadcast x is a mammaL
(when (MAMMAL x) ;If you learn x is a mammaL

(broadcast (STIFLE subgoal))))) ;stifle the subgoal activity.

There are a couple of new syntactic constructs used in this example. You will notice that sprites (such as the

main one) can take two elements in the pattern instead of one. Also notice that broadcasts (such as the first

one in the body of this sprite) can take two arguments. The second argument in both cases is the activity

marker. The main sprite will trigger if an assertion has been broadcast that matches its pattern and that

assertion is part of a currently active activity. The main goal, if it is to enable this sprite, should be part of

such an activity. The function new-activity creates a new activity that becomes a sub-activity of the current

activity. The new activity (bound to subgoal) becomes the activity of the new subgoal of the main goal. The

goal assertion, representing this subgoal, is broadcast with this activity as a second argument. As before, a

sprite is created that watches for the the result of the subgoal to appear and then broadcasts the main result.

An additional sprite is created that waits for this main result to appear, and if so, broadcasts a STIFLE

assertion. Tlhese cause work on the created activity to halt. STIFLE is an Ether primitive.

- At first glance it would seem that the two sprites created (the one that checks for the result and the one that

* does the stifling) could have been combined into one. Why have they been separated? Remember this is a

parallel problem solving system. There may be, concurrently running with this solution attempt, other such

activities with the same overall purpose. Or it may be that this fact is learned by the system in some fortuitous

unexpected way. It doesn't matter. If ever the result is achieved, regardless of how, the activities Lreated to

achieve them will stop working.

t
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4.2 Genraul Schenmas for OR and AND subgoals

Traditional problem solving theory presents two standard techniques of backward chaining 1121 based on

whether one or all of a collection of subgoals must be satisfied for its parent goal to be considered satisfied.

We will present Ether templates for doing these two kinds of reasoning where all subgoals are attempted in

parallel.

4.2.1 OR Suheoals

If we wanted to determine if an object is a living thing it would suffice to determine either that the object is a

plant or an animal. We can say this in Ether by creating two sprites, each watching for a LIVING-THING goal to

be broadcast as shown in figure 5. One broadcasts an ANIMAL goal and the other a PLANT goal. Appropriate

continuation sprites are also created to broadcast the LIVING-THING assertion if either of the subgoals are

achieved.

Fig. 5. Simple Or Subgoals

(when (GOAL (LIVING-THING -x)) -activity 1f you want to show x is a living thing
(let ((subgoal (new-activity))) ;Start a subgoal activity.

(broadcast (GOAL (ANIMAL x)) subgoal) .Ty to show x &s on animol
(when (ANIMAL x) ;If x is an animal

(broadcast (LIVING-THING x))) :broadcast x is a living ihing.
(when (LIVING-THING x) ;If you learn x is a living thing

(broadcast (STIFLE subgoal))))) :stifle the subgoaL

(when (GOAL (LIVING-THING -x)) -activity :f you want to show x is a living thing
(let ((subgoal (new-activity))) ;start a subgoal activity.

(broadcast (GOAL (PLANT x)) subgoal) :Try to show x is an planL
(when (PLANT x) JIf you learn x is a plant.

(broadcast (LIVING-THING x))) ;broadcast x is a living thing.
(when (LIVING-THING x) If you learn x is a living thing

(broadcast (STIFLE subgoal))))) ;stifle the subgoaL

Notice that the activities working on each of the subgoals stop if the main goal is satisfied, regardless of

how. We could create a third such consequent sprite and insert it in the system and these would still behave

properly.

4.2.2 AND Suihoals without Variables

If we wanted to determine whether a person was a bachelor, it would be sufficient to determine that he was

male and unmarried. This could be accomplished by the following:

This consequent broadcasts the two A subgoals simultaneously and establishes continuations awaiting the

results. When they are received. the individual subactivitics arc stifled. Another continuation sprite awaits

the successful completion of both subactivitics and broadcasts the main result.
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Fig. 6. Simple And Subgoals

(when (GOAL (BACHELOR ox)) -activity ;If you Kont to show x is a bachelor.
(let ((subgoall (new-activity)) ;Start one subgoal activity

(subgoa12 (new-activity))) :and another subgoal activity.
(broadcast (GOAL (MALE x)) subgoall) ;Try to determine if x is male
(when (MALE x) :lf you learn x is mal

(broadcast (STIFLE subgoall))) ;stife the subgoal activity.
(broadcast (GOAL (UNMARRIED x)) subgoa12) ;"'Tr to determine if x is unmarried
(when (UNMARRIED x) lf ),ou learn that x is unmarried

(broadcast (STIFLE subgo12))) :stfle the subgoal activity.
(when ((MALE x) ;If )vu learn that x is malp-

(UNMARRIED x)} :and that x is unmarried
(broadcast (BACHELOR x))))) :broadeast that x is a bachelor.

Activities form a tree by a subactivity relationship. When an activity is STIFLEd, it and all activities

transitively related to it by the subactivity relation stop work. The patterns of these consequent sprites are

followed by a pattern variable (i.e. -activity) to indicate the match will only occur if the goal assertion, the

sprite's pattern, was broadcast in an activity that is currently functioning. Any new activities produced inside

the body of this sprite become direct subactivities of the activity in which the assertion was broadcast. The

next section contains a precise description of how activities are defined and their relationship to the other

objects in the system: sprites and assertions. Note that if the main goal activity bound to activity is stifled at

any time work on its subgoal subactivities s.ub..U.l i and suhsogg2 stop work.

4.3 1 low Activities Work

This section describes how activities function, what being in an activity means, and their relation to the other

concepts of the system.

The Ether environment consists of assertions and sprites. The actual "work" of the system is done by

executing the bodies of sprites that have been triggered by assertions. In order for a sprite to trigger, it must

be part of some (non-stifled) activity. Associated with each currently active sprite is an activity. Associated

with some assertions (those representing goals, for instance) must be one or more activities that will supply

processing power to sprites matching the assertion, i.e. sprites capable of carrying out the tasks called for in

the assertion.

: 4.3.1 The Rules

There arc two cases that need be considered.

(a) If the sprite is of the form:
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(when (pattern)
body)

and is part of a currently active activity, the match will be processed. All new broadcasts and sprite activations

that result from evaluating the sprite's body will happen in the same activity.

(b) If the sprite is of the form:

(when (pattern) -activity
body)

is part of a currently active activity and the assertion has been broadcast with one or more activities that are

currently active, the match will happen. All new broadcasts and sprite activations that result from evaluating

the body will happen in a new activity that is a subactivity of all tie activities the assertion was broadcast in.

This property is retroactive. If the assertion associated with the parent activity is subsequently broadcast with

a new activity, this activity is added to the list of parents.

When an activity is stifled, all work occuring in that activity is halted. If this activity has subactivities they are

also stifled providing they do not have additional parent activities that are not stifled.

I

t
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Chapter V iypothetical Reasoning

Many procedural deduction systems contain facilities for creating separate subworlds of the then current

collection of assertions (world model) to allow reasoning new deductions to be made that are contingent on

this collection of assertions. New deductions made arc placed within this subworld and thus the rest of the

system is left unaltered.

The notion of a situation is introduced by McCarthy [131 as one way of accomplishing this. All n-tuple

assertions are made into n + I -tuple assertions by the inclusion of a situational tag. For example the assertion

(HAS MONKEY BANANAS) can be relativized to become (HAS MONKEY BANANAS 1ORLD15). Then if all assertions

are so relativized, the problem solver can reason about what would be true in WORLOI5 and can make new

assertions that apply to that world without affecting the state of belief about other hypothetical worlds.

QA4 introduced the notion of a context for similar reasons. Contexts are a generalization of Algol block

structure. Contexts can be pushed and popped. When a context is popped, changes made in that context

become invisible. QA4 generalizes block structure by making it possible to coroutine between the various

contexts; contexts form a tree structure. The QA4 context mechanism is somewhat less general than situational

tags because only one context can be current at a time. 'his makes it impossible to concurrently examine and

manipulate several of them. Contexts do supply one additional structuring mechanism that situational tags

do not. When a context is pushed the new context contains all the information contained in the previous

context. This makes it easy to determine the implications of making a change to the current world model

without making a separate copy of it.

Context and situational tag-like mechanisms are used to create hypothetical worlds inside the machine that can

be reasoned about separately. There are two reasons for wanting such a mechanism. The first is to determine

the consistency of a hypothesis with presently believed facts. The second is to determine the implications of

making changes to the current world as would be done in robot planning problems, for example. We will call

these two uses additive and manipulative. The name additive is used because the collection of assertions

representing the new hypothetical world is a superset of the assertions in the old one. Manipulative

mechanisms are more general. The assertions in the hypothetical world produced are a function of the

assertions in the one it was derived from. Manipulative mechanisms are inherently more complex. Most

problem solving systems place more emphasis on manipulative rather than additive hypothetical reasoning

and in fact do not recognize the difference. We have found some new uses for additive mechanisms in

parallel problem solving and will concentrate only on these in this paper. A discussion of manipulative

hypothetical reasoning and their uses in planning will appear in a later paper.
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5.1 Viewpoints

The tenn given to the Ether analog of context or situation is viewpoint. Viewpoints have the flexibility of

situational tags and an inheritance mechanism something like contexts. All assertions representing facts about

the world are considered to be in some viewpoint. Thc syntax for these assertions is a 2-tuple: the first

element is the assertion itself and the second is the viewpoint. For example ((ON A B) Hi) means that

(ON A B) is true in Viewpoint HI. So far viewpoints look just like situational tags. When viewpoints are

created, they may be declared to be subviewpoints of other viewpoints. When a viewpoint is made a

subviewpoint of another (in an additive hypothesis) all assertions of the second virtually become assertions of
the first- i.e. sprites will trigger on them as if they were actually broadcast in the subviewpoint. This concept is

similar to Fahlman's [4] notion of virtual copying.t

The function used to create new viewpoints is called new-viewpoint. It is given as an optional argument the

viewpoint* it is a subvicwpoint of. It might be used in tie following way:

(lot ((hypothetical (new-viewpoint (parent INITIAL)))
(broadcast ((ON B C) hypothetical)))

This has the effect of creating a new viewpoint (which we will call "HYPOTHETICAL" for the sake of discussion)

that is a subviewpoint of the currently existing viewpoint INITIAL. Suppose that INITIAL had three assertions

in it at some point in time:

((ON C A) INITIAL)
((ON A B) INITIAL)

((MADE MOON ROQUEFORT) INITIAL)

Then immediately after the broadcast, HYPOTHETICAL would contain (at least) four assertions:

((ON C A) HYPOTHETICAL)
((ON A B) HYPOTHETICAL)

((MADE MOON ROQUEFORT) HYPOTHETICAL)
((ON B C) HYPOTHETICAL)

The contents of INITIAL is not affected at all. Note also that any addiional assertions broadcast at any future

time in INITIAL will immediately appear in HYPOTHETICAL; Lhere are no race conditions between subviewpoint

creation and broadcasting in superviewpoints. We will use a diagrammatic representation to describe

t The terminology here is somewhat ambiguous, We will sometimes consider ((ON A I) 111) to be an assertion and sometimes consider
it to represent the assertion (ON A R) in viewpoint Ill I lopefully this will not cause confusion.

: The viewpoint hierarchy can be more general than a tree structure. A viewpoint can be a subviewpoint of more than one other

viewpoint. The subvicwpoint hierarchy can form any graph without directed cycles. The assertional content of each of the parents i
virtually copied into the subvicwpoint. We do not have the multiple parent inheritance problem that occurs in class-structured
languages. For the remainder of this chapter, though, all viewpoints will have no more than one parent

.4
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viewpoint structures as shown in figure 7.

Fig. 7. Examiple of Hypothetical Viewpoint

II
I (ON C A)
I (ON A B)
I (MADE MOON ROQUEFORT)

initial

Ii I
S(ONBC) II I

h)'othetical

Individual viewpoints are shown as boxes of assertions with subvicwpoint relations indicated by arrows. An
assertion that is virtually copied from one viewpoint to another will be explicitly shown only in the viewpoint

it was actually broadcast in. However, to antecedent sprites, it will appear just as if the the assertions were

carried along the subvicwpoint link and actually placed in the lower viewpoint. Suppose there was an active

antecedent sprite such as:

(when (((ON ex -y) HYPOTHETICAL) ;lf x is on y in the Iypothetical viewpoint
((ON y -z) HYPOTHETICAL)) :and y is on z in that viewpoint

(broadcast (,ON x z) HYPOTHETICAL))) ;Assert x is on z in that viewpoint

Then the assertions (O1 A e) and (ON e C) will be picked up by this sprite and cause (ON A C) to appear in

HYPOTHETICAL. The new viewpoint structure appears in figure 8. When doing antecedent reasoning from the

Fig. 8. Hypothetical Viewpoint After Processing

(ON C A)
(ON A 8)

(MADE MOON ROQUEFORT)

I II inihiaA

I (mON c) I
I (ON A C) II I

hinoiheica

MONO
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assertions in a hierarchy of viewpoints, the only assertions to be actually broadcast in the subviewpoint are

those that depend on the new assertions broadcast in the subviewpoint. 'I'his (assuming additive inheritance) is

a rather trivial contribution to the study of the frame problem.

5.1.1 Antecedent Reasonine With Viewpoints

All work, including both consequent and antecedent reasoning, must occur in some activity. Tbe emphasis

throughout this work is on schemas for consequent reasoning. Code for creating activities to pursue

antecedent reasoning has been, for the most part, left out of the examples. Our technique for instantiating

antecedent sprites is a variation on the one used by Charniak [14). The key idea is we have a sprite that

requires an activity to trigger (just as we do with goals). The assertion this sprite triggers on indicates the

viewpoint on which antecedent reasoning is to be done. This sprite creates the antecedent sprites in the new

activity. In Ether code this appears as follows:

(when (ANTECEDENT-REASON viewpoint) -activity
(when (antecedent, viewpoint)

(broadcast (consequent, viewpoint)))
(when (antecedent 2 viewpoint)

(broadcast (consequent 2 viewpoint)))

(when (antecedenmn viewpoint)
(broadcast (consequent, viewpoint))))

There may of course be many antecedent reasoning activities working on a given viewpoint. If the antecedent

sprites are divided into several activities according to the semantics of the problem domain, these activities

can be manipulated separately as the computation progresses.

It is the responsibility of the code that creates a viewpoint to initiate antecedent reasoning on the viewpoint.

5.2 Deduction by Antecedent Reasoning to Anomalies

One use for additive viewpoint inheritance is in doing what mathematicians call indirect proof Indirect proof

is a proof method in which the negation of the theorem that is desired to be proved is assumed and

contradictory consequents are demonstrated. Indirect proof is used very commonly in mathematical

reasoning. If you scan a typical text in Topology, say [151, it seems that more than half the theorems use

indirect proof for at least part of their demonstration.

There has been some argument in recent years that indirect proof is not appropriate as a sound basis for

reasoning in domains outside pure mathematics. The argument asserts that any complex reasoning

mechanism must contain some mutually incompatible beliefs. If some assumption is made a contradiction

will be obtainable. Thus any fact you like is derivable via indirect proof. While the basis of this assumption

(the inherent inconsistency in the belief' structures of a sufficiently complex reasoner) is undoubtably correct.

K
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and strongly suggests that logic cannot be an ultimate basis for reasoning,t the plausibility of some

mechanism very much like indirect proof for reasoning about negalive goals seems still quite necessary.

'The basic idea is that the reasoning mechanisms imagincs the antithesis of the negative goal to be true in a

separate hypothetical world that also contains facts currently known to be true. This world is then examined

for anomalous conditions. If one is found, the original negative result is asserted. For example, if I told you

there was an angry skunk in this room you would not believe me. How do you so quickly decide this? I

propose that the reasoning goes something like: "Suppose there were an angry skunk in this room. Then

there would he a horrible odor. I do not notice a horrible odor. 'Iherefore there is no such skunk here." We

have achieved a negative goal. What we have done is created a world inside our machine in which we placed

all known facts plus the fact that there was an angry skunk in the room. The antecedent theorems "went to

work" and quickly discovered an anomaly. This mechanism seems far more plausible than straightforward

consequent reasoning. It is easier to imagine an antecedent-driven indirect proof-like mechanism for doing

this than a consequent method that knows how to prove a skunk isn't in a room.

The reason this mechanism seems primarily useful for deriving negative results in "common sense reasoning"

is that the technique depends on the ability to reason antecedently from the negative of the fact to be

demonstrated. If the goal was to prove there is a skunk in the room we would have to imagine a world that

contained the one additional fact of there not being a skunk in the room. Certainly this fact would not trigger

any new facts and thus nothing can be learned; no anomalies could be found.

It is interesting to note that indirect proof, in mathematics, does not exhibit this limitation. This is because of

the nature of mathematical concepts. In mathematics, if we can derive interesting facts from the proposition

P. then it is also likely that P will have interesting consequents. One mathematical argument might go like

"Suppose topological space T is Hausdorf. Then there is some open neighborhood U of x such that ..." or like
"Suppose topological space T is not Hausdorf. Then there are two points x and y in T such that there is no

open set containing y that does not contain x. ...." There does not seem to be the same asymmetry as exists

with common sense reasoning.

The way we would do indirect proof-type reasoning in Ether is by creating a viewpoint that inherits from the

viewpoint containing facts about the world and place in that new viewpoint the negation of the fact we are

trying to deduce. In addition to doing normal antecedent reasoning on this viewpoint, special "anomaly

expert" sprites are created to watch the viewpoint, In a logic theorem prover, an appropriate anomaly expert

would be a sprite that checks for simultaneous existence of a fact P and a fact -'P in the knowledge base.

t layes [161 does not discuss this objection to logic in his otherwise insightful criticism of criticisms of logic. However, in Hayes'
defcnw. for this problem to be of important pragmatic concern would require the construczon of systems much more intricate Oa any
discussed to date in the artiricial intelligence literature.

- L77-."
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As an example of the use of indirect proof in Ether, suppose we had a viewpoint (called WORLD) with the

following assertions: (D Q R), (Q P Q), and -R, with a goal of -P. Figure 9 shows a sprite that knows how

to prove negative goals via indirect proof. It does this by creating a new viewpoint and places the antithesis of

the negative goal (P) in this viewpoint. Antecedent sprites working on the upper viewpoint also work on the

lower one, placing all results that involve any of the assertions in the hypothetical viewpoint explicitly in it.

One additional sprite is created that watches for contradictions in this hypothesis viewpoint. If they are

found, the result (-P) is broadcast in the upper viewpoint.

Fig. 9. Sprite that Initiates Indirect Reasoning

(when (GOAL ((-' -x) -w)) -activity If there is a negative goal
(let ((hypothesis (new-viewpoint w))) :Create a new hypothesis viewpoint

(broadcast (x hypothesis)) :Place the goals antithesis in this viewpoint
(when (((-' y) hypothesis) :If a fact and its negation

(y hypothesis)) :appear in the hipothesis viewpoint
(broadcast (('- x) w))))) ;Broadcast the resultant theorwmn

In order to get the ball rolling, the following would have to be executed:

(broadcast (GOAL ((-- P) WORLD) ACTIVITY5)

(when ((-' P) WORLD)
(broadcast (STIFLE ACTIVITY5)))

We do not have the continuation sprite in figure 9 stifle the activity of the indirect proof activity directly.

Rather, we create a separate sprite that watches for the result to be achieved and then stifles the activity. It

should not matter who solved the goal, or how it was solved, for this activity to be stifled.

The GOAL assertion will be picked up by the consequent sprite shown in figure 9 and will create a viewpoint

structure as shown in figure 10. Assuming we have activated an antecedent rule implementing modus ponens,

new facts will be derived in the hypothesis viewpoint producing the viewpoiit structure of figure 11. Then
L the sprite that was created to watch for assertions and their negations will deteit R and -R being present in

the lower viewpoint and broadcast the result to the higher viewpoint as shown it, figure 12. At this point the

sprite that watches for the goal (-P) to be achieved stifles ACTIVITY5 and all work attempting this goal stops.

The purpose in our introducing techniques of indirect proof are twofold. First, it is an cxamt)le of a program

in which the reasoner can concurrently reason about different world models (viewprints) in parallel. Any

consequent directed sprites that picked up the goal of -P would have worked unhindered in parallel with the

4 one attempting indirect proof. The second purpose is suggested by the skunk example above. If P does not

imply any anomalies (i.e. -P is not derivable by indirect proof) then P is at least plausible. 'his is the subject

of the next section.
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Fig. 10. Initial Indirect Reasoning Viewpoint Structure
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Fig. 11. Subsequent Indirect Reasoning Viewpoint Structure
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5.3 Modeling Goal States and Opponents

A well known difficulty with backward chaining is that it can easily lead to exponentially widening trees of

goals where many of the goals in the tree are to achieve states that are simply not true. There is a great

advantage in stifling the activity working on untrue goals: every such goal is itself the root of an exponentially

widening tree of (guarantccd useless!) subgoals. The strategy we will adopt in this section is to create when

appropriate a model of what the world would be like if the goal were true and see if there arc any anomalies

that would indicate that the goal is unachievable. In Ether we do this by creating a viewpoint that inherits

Li
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Fig. 12. Final Indirect Reasoning Vicispoint Structure
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from the viewpoint containing the world model in which the goal is broadcast. This viewpoint represents
what the world woull be like if the goal were true. We instantiate both standard antecedent sprites and

anomaly detection sprites that work on this viewpoint.

In this section we will build on the example of simple OR subgoals in figure 5 on page 17 which contained

two sprites that turned a goal of showing some object was a LiVN-Tg into two subgoals of showing it is a

PLANT or an ANIMAL. We will assume now that we have a world model containing facts about the objects in the

system. In particular we may know some facts about the object we wish to prove is a LIVING-THING (call it
FRED), say that it is MOBILE. This along with other facts about our world are contained in a viewpoint. We will

modify the consequent sprites shown in figure 5 to create new viewpoints containing the subgoals themselves.

In these subviewpoints antecedent reasoning is performed on the goal also using information contained in the
world model viewpoint. In this way the consistency of the subgoal is checked. We know of only one fact so

far, though the world model perhaps contains many others; that fact is that Fred is mobile. Our database
contains at least the following assertion: ((MOBILE FRED) WORLD).

In figure 13 each of the component subgoals establishes a viewpoint that inherits from the WORLD viewpoint.

In this viewpoint is placed the assertion of the goal. We want to do antecedent reasoning on the contents of

these new viewpoints. There are presumably already antecedent sprites that arc pattern matching on the

WORLD viewpoint. We would like to extend their range of application to the newly created viewpoints. There

is an 'thcr primitive for doing this called SPRITE-INHERITS. It is broadcast with two arguments, the inherited

and inheriting viewpoints. It must be broadcast in a certain activity in which all the work done by these



- 28-

Fig. 13. OR Subgoals With Opponents

(when (GOAL ((LIVZNG-THING -X) 0b)) Sactivity ;If there is a goal of showing x is a living-thing
(let ((subgoal (new-activity)) :create a new activin for a subgoal

(subplot (new-viewpoint h))) -and a new viewpoint for an opponent

(broadcast (GOAL ((ANIMAL x) h)) subgoal) ;Broadcast the ne. subgoaL

(when ((ANIMAL x) h) ;lf the subgoal has been achieveA

(broadcast ((LIVING-THING x) h))) ;Broadcast x is a living thing

(when ((LIVING-THING x) h) If you determine x is a living thing

(broadcast (STIFLE subgoal))) ;stifle the subgoat

(broadcast ((ANIMAL x) subplot)) :Broadcast the goal to the opponent viewpoint
(broadcast (SPRITE-INHERITS subplot h) subgoal) :and start antecedent reasoning

(when ((CONTRADICTION) subplot) :If the opponent viewpoint is contradictory,
(broadcast (STIFLE subgoal))))) ;stifle the subgoaL

(when (GOAL ((LIVING-THING -x) h)) -activity if there is a goal to shown x is a living thing

(let ((subgoal (now-activity)) ;Create a new subgoal activity.
(subplot (new-viewpoint h))) :and an opponent viewpoint

(broadcast (GOAL ((PLANT x) h)) subgoal) :Broadcast the new subgoaL

(when ((PLANT x) h) If the subgoal has been achieveiL
(broadcast ((LIVING-THING x) h))) ;Broadcast x is a living thing

(when ((LIVING-THING x) h) :If you determine x is a living thing

(broadcast (STIFLE subgoal))) ;stifle the subgoaL

(broadcast ((PLANT x) subplot)) ;Broadcast the goal to the opponent viewpoint

(broadcast (SPRITE-INHERITS subplat h) subgoal) ;and start antecedent reasoning
(when ((CONTRADICTION) subplot) ;If the opponent viewpoint is found contradictory,

(broadcast (STIFLE subgoal))))) ;stfle the subgoal activity.

inherited sprites happens. If that activity becomes stiflcd all work done by these sprites in the inheriting

viewpoint stops. We create an additional sprite watching for contradictions to be determined via antecedent

reasoning. If one is found, the subgoal activity (which includes the antecedent reasoning on that viewpoint) is

stifled. The viewpoint structure appears in figure 14.

Fig. 14. Viewpoint Structure ror OR Subgoal Opponent

I I
(MOBILE FRED) I

I I
I wor

I I I I
- (PLANT FRED) I I (ANIMAL FRED) I
I (CONTRADICTION) I I II I I I

hvnolhesistf , hVothesis2l

Antecedent reasoning will eventually determine that MOBILE and PLANT are incompatible properties and

!A
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broadcast the (CONTRADICTION) assertion.t

The general name we give to work being done to try to prove goals insoluble is opponent activity. The

viewpoints created to look for contradictions for an opponent activity are called opponent viewpoints. The

opponent concept is a generalization t " what is usually referred to as goalfillering.

The mo'st familiar example of goal filtering in the literature is the classic geometry theorem proving program

of Gclerntcr 1171. 11is program used only backward chaining. A representation of the diagram was available

to the program. Before it would attempt work on any goal it first checked to see if the theorem was true of the

diagram. If it was not true, work on the subgoal was never begun. Otherwise the subgoal was attempted.

This is analogous to our creation of a new inheriting viewpoint in which the goal is asserted and contradictions

are looked for. Opponents are more general than goal filters because we do not require the opponents to

always terminate in a reasonable amount of time. It would be catastrophic in a sequential system using goal

filtering if even rarely the filtering procedure did not terminate. Imagine that instead of proving the validity

of a theorem in geometry we were interested in saiisflability. Presence of supporting evidence in the diagram

would solve the problem. Lack of supporting evidence would not be useful information. However, our

opponents wouldstill be useful. If a contradiction was determined then the theorem would not be satisfiable.

In the event of and subgoals we would create an opponent viewpoint that contained all the conjuncts. The

example of AND subgoals in figure 6 is redone in figure 15.

Fig. 15. And Subgoals With Opponents

(when (GOAL ((BACHELOR -x) -h)) -activity :If there is a goal of showing x is a bachelor.
(let ((subgoall (new-activity)) :Create a subgool activity,

(subgoal2 (new-activity)) ;and another subgoal activity.
(subplat (new-viewpoint h))) :Create an opponent viewpoinL
(broadcast (GOAL ((MALE x) h)) subgoall) :Broadcast a 'male' subgoaL
(when ((MALE x) h) :If x is shown to be male.

(broadcast (STIFLE subgoall))) :st#je that subtoaL
(broadcast (GOAL ((UNMARRIED x) h)) subgosll) :Broadcast an 'unmarried' subpL
(when ((UNMARRIED x) h) ;Jf x is shown to be unamrrW

(broadcast (STIFLE suboallZ))) :stole that subgoL
(when {((MALE x) h) :f x is shown to be male.

((UNMARRIED x) h)) :and x is shown to be unmarre
(broadcast ((BACHELOR x) It))) :broadcast x is a bachelor.

(broadcast ((MALE x) It)) :Broadcast a male assertion to the opponent viewPohlL
(broadcast ((UNMARRIED x) h)) :And also an unmarried assertion.
(broadcast (SPRITE-INHERITS subplat h) aubgoall subgoal2) ,Antecedently tea.
(when ((CONTRADICTION) h) :if there is a contradictio.

(broadcast (STIFLE subgoall)) :Stifle one subgoaL
(broadcast (STIFLE subgoal2))))) ;Sifle the other subgoaL

Unlike the case with OR subgoals, we require only one opponent viewpoint in which we put all the conjuncts

because all must be true if the goal is to be realizable. Figure 16 shows the viewpoint structure created for a

t If it sems to you that an unrcasonably large amount of antecedent reasoning must be done to support this, see section 6.3.

!A
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particular world ,nodel by the consequent sprite of figure 15 after two independent goal broadcasts:

(GOAL ((BACHELOR JOHN) WORLD))
(GOAL ((BACHELOR SUE) WORLD))

Fig. 16. AND Subgoal Opponent Viewpoint Structure

I I
(FEMALE SUE)

I I
I I

worlA

(UMAREDJON i I

(MALE JOHN) I I (MALE SUE)

(UNMARREDI J (UNMARRIED SUE) II I I I
I John 's ononenl I SUe'S oooonenil

Both goals are processed concurrently with opponent activity trying to refute them. In each opponent

viewpoint is a description of what the world would be like if the goal were true. One of the opponents (Sue's)

rather quickly discovers a contradiction as shown in figure 17 and the activity working on

(GOAL ((BACHELOR SUE) WORLD)) is stifled.

5.4 Modeling The Goal Stack in Opponents

If there are several goals arranged hierarchically we would like the opponent viewpoints to chain together in a
way that mimics the goal stack. Subgoals lower down can often be constrained by the overall purpose of the

main goal. For example, if we had the goal stack of figure 18 where the BACHELOR goal establishes two

conjunctive subgoals: UNMRRIED and MALE and the UNMARRIED subgoal in turn sets up a subgoal to show FRED

does not have a HUSBANO. This, however, is a subgoal that is only applicable in cases where the object is a

female. ibe subgoal should get stifled immediately. Using the methodology for opponents shown so far, this
constraint would not be carried along h,-cause each opponent inherits from the viewpoints containing the

world model viewpoint. Instead of having each subgoal link its opponent directly to the WORLD model

viewpoint, we would like it to link its opponent to the opponent of the goal it is a subgoal of. For this

particular example, the opponent viewpoint structure is shown in figure 19. In order to make this work, we

must pass the name of the opponent viewpoint along with the goal assertion itself. The consequent sprite in
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Fig. 17. Subsequent AND Subgoal Opponent Viewpoint Structure

I I
(MALE JOHN)

I worMa

I (MALE JOHN) (MALE SUE)

(UNMARRIED JOHN) (UNMARRIED SUE)
(CONTRADICTION)

John's opponent L Sue's ogonenul

Fig. 18. Example Goal Stack

(GOAL (BACHELOR FRLD))

(GOAL (UNMARRIED FRED))

(GOAL (NOT (HAS FRED HUSBAND)))

*o Figure 15 is redone in figure 20 with this modification. The explicit goal assertion contains an additional

element: the name of the opponer.t viewpoint working on the goal. This allows the code in the sprite bodieg

to make the newly created opponent viewpoint a subviewpoint of the opponent viewpoint of its supergoal.

Other than this, the code is identical.

f

4.
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Fig. 19. Opponent Viewpoint Structure for Goal Stack

---------- _ -- . . .... ......

I (BACHELOR FRED) I

_------_----. 'Z121quoIl

(UNMARRIED FRED)
I ~a~ccI

I . .............. ----- ---

I(NOT (HAS FRED HUSBAND))

--------------- IQCL

Fig. 20. Code to Create Viewpoint Goal Stack Model

(when (GOAL ((BACHELOR -x) -h) -opponent) -activity :if you want to show x is a bachelor.
(let ((Subgoall (new-activity)) ;Start one subgoal activity.

(subgoal2 (now-activity)) :Start another subgoal activity.
(subplot (now-viewpoint opponent))) -Create an opponent viewpoinL

(broadcast (GOAL ((MALE x) h)) subgool?) :Broadcast a 'male' subsoal
(when ((MALE x) h) ;If x is shown to be male,

(broadcast (STIFLE eubgoall))) :Srle the subgoal activity.
(broadcast (GOAL ((UNMARRIED x) h)) subgoalt) :Broadcast an 'unmarried' subgoaL
(when ((UNMARRIED A) h) ;If x is shown to be unmaried,

(broadcast (STIFLE subgoal))) :stifle the subgoaL
(when (((MALE x) h) :If x is shown to be moe,

((UMARRIED x) h)) :and x is shown to be unmarried
(broadcast ((BACHELOR x) h))) *Broadast x is a bachelor.

(broadcast ((UNMARRIED x) subplot)) :Broadcast 'unmarried' to the opponent
(broadcast ((MALE x) subplot)) :Broadcast 'male' to the opponent.
(broadcast (SPRITE-INHERITS subplot opponent) ;Start antecedent reasoning

eubgoall subgoa12)
(when ((CONTRADICTION) subplot) -If there is a contradition

(broadcast (STIFLE subgoal?)) style one subgoal activity,
(broadcast (STIFLE suboal2))))) -and st(/e the other subgoal activity.
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5.5 The Relationship Between Viewpoints and Activities

In every example in this chapter wc have created viewpoints and activitics in parallel. Whenever there was a

problem to be solved, an activity would be created to pursue the problemn and a viewpoint created to serve as
a "scratch pad" for the activity. This close relationship might tempt one to simplify the language somewhat

by combining the two notions.

Viewpoints and activities are, however, quite distinct notions. Viewpoints are a mechanism for structuring

and localizing knowledge. Activities are a way of controlling the processing that actually gets done. Less
trivial programs in Ether than the examples in this paper might require the use of an activity that needed to

access more than one world model (i.e. viewpoint) to accomplish its purpose. Conversely, the information in

a viewpoint may be useful irrespective of the state of the activity that created it.
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Chapter VI Some Further Ideas

6.1 Resource Control

We have argued that by allowing many processes to run concurrently tighter control over certain search

problems can bc achicved. This increase in control can come from two sources: (1) taking advantage of wide
variabilities in the timings of methods, and (2) the use of opponents to prune demonstrably useless attempts.

The system is able to capitalize on interactions between various running activity in ways that would be
hopelessly complex to manipulate by a coroutine-like control structure. Although our system is protected

from catastrophic failure when individual activities diverge, there is one sense in which we have lost control,
we have no means to protect the system froin getting choked with thousands upon thousands of activities,
choked to the point where no activity can do anything at all!

6.1.1 The Basic Idea

The kinds of problem solving situations Ether is designed for involve substantial trees of backwardly chained
* goals. Thew problems have the character that any given approach (goal) is not likely to succeed. We have

proposed one mechanism, namely opponent activity, that can achieve eventual pruning of activities working
on useless subgoals. Often it will require some amount of worke to be done for a goal to be pruned. We are of
course most interested in pruning goals higher up in the tree. Because of the exponential growth character of
expanding goal trees, there may be, in a short time after the program is started, so many running activities that
none can get anything done. The system becomes choked. Even if you see this scenario as being somewhat
unrealistic, it would seem that in a large problem solver some little corner of it would have this property of
generating many useless activities that do not get quickly stifled. This one corner would grow in a cancer-like
way and could come to dominate the entire problem solver. This is the traditional idea of a "combinatorial
explosion" applied to activities instead of data. We have to provide some means of preventing it from getting
out of hand.

Our solution to this problem is the introduction of the notions of processing power and energy. The machine
is viewed as a finite resource usable at a constant rate in the sense that during a given interval of time the

- machine can do a constant amount of work. Drawing an analogy with physics, we say that a machine has a
* constant amount of power available to it that can be divided among its running activities. Each activity uses

up an amount of energ)y equal to the time integral of the power available to it. When an activity creates
another activity, it mo'st give up a certain amount of its processing power to this activity. T'hus processing

power, in addition to being conserved globally, is converved locally. 1
An analogy with tree search algorithms can be made here. Sequential programs can be said to correspond
with depth-first search, and parallel programs to breadth-first search. There is a third class of tree search

7-
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algorithm known as best-first that is a generalization of depth and breadth-first search. Best-first searches can

make use of available heuristic information to decide what node to examine next. If all activities are given

approximately equal amounts of processing power then the control structure is similar to a breadth-first

search. If only one activity (or one string of activities related by the sub-activity relation) has processing

power at a time it is similar to a depth-first search. Best-first search can be emulated by using heuristic

information to control the allocation of processing power.

Parallel processing with resource control is actually more general than best-first search. With best-first search,

after we have picked a method, we -re committed to pursuing it until we are given the opportunity to pick the

next method. Parallel processing allows you to change resources allocated to running activities whenever facts

are discovered that would suggest such changes; there is no concept of an atomic, indivisble action.

6.1.2 An Inmplementat ion of Resource Control

There are two kinds of resource limitations we might want to define for an activity: power and energy. A

resource limitation on energy is optional; an activity with no energy limit will keep computing as long as it has

something to do. All activities are power-limited, whether or not the language supplies a means of controlling

it. In this section Ether primitives for dealing with these two quantities will be described. They have not been

extensively used and should be considered tentative.

The machine is viewed as consisting of some constant amount of power that is divided among the running

activities. For the moment we will assume the activity graph to be a tree. When an activity creates another

activity it must give it a certain amount of its own processing power if this activity is to do anything. The

processing power owned by an activity is distributed in some manner between its needs and those of its

subactivities. The default allocation strategy is to divide power equally between an activity and each of its

subactivitics. With an exponentially growing tree of activities this has the property that the allocation of

power falls off exponentially as the tree is traversed down from the root.

When the default scheme is not desired there must be a way to alter the power allocation assigned to a node.

An activity is created to do a job. When an activity is created, its creator gives it an amount of processing

power that corresponds to its notion of how important this job is to it at the time. 'his activity in turn divides

its power in the way it sees most fit. For these reasons the primitives dealing with processing power do not

deal in terms of proportions of the total machine resources that it is getting, they deal only in terms of

proportions of the processing power that have been assigned to it. We think of the processing power posessed
by an activity and its subactivities as summing to 1. Thle default scheme, then, allocates implicitly a power of
l/(n+ 1) to it and each of its subactivitics. If it becomes desirable to change from the default allocation it

should do:
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(broadcast (PROCESSING-POWER activity number))

for subactivities it has created and for its own use:

(broadcast (PROCESSING-POWER-SELF aclivily number))

All subactivities that have not been explicitly allocated will divide up among themselves all the power that has

not been allocated. It is an error if the sum of these numbers for an activity and its subactivities is greater than

Thc other resource we would like to specify ways of limiting is energy. Processing energy is a quantity we are

used to dealing with, sometimes expressed in the units of "CPU seconds." It is, unfi)rtunately,

implementation (and program) dependent. One would not use it in a program without having first had quite

alot of experience with that program on that machine. This, unlike ideas about processing power, has

received some treatment in the literature in the context of agendas and has been used as an integral part of at

least one artificial intelligence system [18]. There are any number of things we might want to do if an activity

has expended its energy limit. The following sprite stifles an activity when it has reached a prescribed energy

limit:

(whe (PROCESSING-ENERGY activity number)
(broadcast (STIFLE activity)))

Other things we may want to do when an activity has reached a limit is check to see how it is doing, based on

information that has been broadcast by that activity during its running. If it has been making "satisfactory

progress" it should be allowed to continue, otherwise halted.

The primitives described are just that, primitives. We need to build on this a higher level language for

discussing resource control that speaks in the language of problem solving rather than these low level

concepts.

6.2 Quiescence

This paper discusses the desirability and possibility of doing reasoning in parallel. Emphasis has been placed

on useful interaction between concurrent processing in order to limit search. In section 6.1.2 we present

control structure ideas for making use of notions of variable processing power to implement depth first-like

searches, characteristic of "sequential" problem solving.

One thing we can't do with the primitives presented so far in any easy way is to: "Order some methods. Try

them one at a time. Only when you have exhausted all possible regimes for employing a given method do you

go onto the next." Considering this to be the only natural control structure in our distant ancestor,

Micro-Planncr. it may seem somewhat odd that we cannot handle it! This does not really cause us concern
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because in a problem solving situation it is rarely possible to be sure that all activity that could possibly

accomplish some goal has terminated: new information may be learned that could give a quiescent activity,

one with no work to do currently, new things to do. For most applications we believe it desirable to use the

nerits of what the activity has or has not done so far as a gauge on whether to allow it to continue or not.

Quiescence is really a degenerate case of the much more important problem of detecting when an activity has

ceased to make useful progress.

There do seem to be, however, certain kinds of problem solving situations in which it is desirable to determine

whether an activity has gone quiescent. I believe one such problem is cr)ptarithimetic. A well-known example

of a cryptarithmetic problem from Newell and Simon's book [19] is:

DONALD
+GERALD

ROBERT

The problem is to find an assignment of digits to letters so that this template represents a valid summation.

This kind of problem is most usefully solved by multi-stage process of constraint propagation and case
splitting. Constraint propagation can be accomodated in Ether by antecedent reasoning. For example, if we
learned that (HAS-VALUE 0 5). an antecedent sprite could assert (by examining the last column) that R must
have a value greater than five and G a value less than 5. These constraints would "propagate" to other

columns containing the letters R and G, and to other letters that were competing with G and R for values. In

this way the problem solving space becomes constrained monotonically with time. When antecedent

processing has terminated (becomes quiescent), as it must in a reasonable amount of time, either all letters

will be assigned unique digits making the problem solved, or there will be some letters that are not yet fully

constrained.

The search for a solution can continue by case splitting on the value of sc trie digit. For cxam ple, if wc know

that R must be either 7 or 9. two new viewpoints can be created, inheriting from the current one, in which

(HAS-VALUE A 7) and (HAS-VALUE n 9) are placed respectively. Antecedent processing continues in these
viewpoints until one of three things happen: a contradiction is determined to exist in the viewpoint in which

case antecedent processing activity is stifled, a solution is reached, or a quiescent state is reached. If the third

possibility happens case splitting c,-n be effected again on some other digit.
~To detcct quiescence, the pattern ofra sprite may be the special form: (QUIESCENT activity). The sprite will

then trigger when the designated activity has gone quiescent. Using this the cryptarithmctic problem solver

described above can bc implemcnted in a straight forward manner,

Micro-Planner-stylc depth first searches can be implemented using the quiescence detection mechanism. This

.............
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is done by starting up one alternative, waiting for its activity to become quiescent, and then starting the next.

This is shown in figure 21.

Fig. 21. Code for Implementing l)epth First Search

(let ((activityl (new-activity)))
(broadcast (GOAL (allernaivel)) activityl)
(when (QUIESCENT activityl)

(let ((activity2 (new-activity)))
(broadcast (GOAL (alternative2)) activity2)
(when (QUIESCENT actvlity2)

(let ((activity3 (new-activity)))
(broadcast (GOAL (allernlalive3)) activity$)
(when (QUIESCENT activity3)

6.3 Virtual Collections of Assertions

The value of pattern-directed invocation as a basis for artificial intelligence programming is in the generality

different methods have for communicating with each other. The different methods communicate in a

language based on the semantics of the problem domain rather than one based on the control structure of the

program. It is certainly a poweful idea yet one that has met little application outside of "toy" domains. This

can be attributed principally to the lack of efficiency of all extant implementations. The lack of efficiency can

be traced to two sources: (I) Any assertion broadcast is potentially processable by any sprite. (2) All

information flow in the program involves the creation of assertions, structures that need to be CONS'd.

Discrimination nets and other technical aids ameliorate the situation somewhat, though not enough.

Compilation schemes, although attractive at first glance, do not seem very plausible in the general case.

C3mpilation of Ether-like languages would entail converting broadcast-when interactions into function calls

with arguments. If we knew that goal assertions of a certain form were only and always received by a certain

set of sprites, the broadcast of this assertion could be replaced by function calls of the code associated with the

sprites. However, sprites can be created while the system is running. There is no way a compiler can know

from syntactic considerations when this is the case. You might imagine a scheme in which the user specifies

when this more restricted condition holds. While this can certainly be done, the program writer might just as

well have specified the code in terms of the function calls it would be compiled into.

It is the case that many subsections o; a typical Ether-like program can be easily coded in a host language such

as Lisp. We would like a scheme for such hand-coded methods to communicate with other hand-coded

methods and with subsections of the system that are more naturally written using pattern-directed invocation.

'he inspiration for the method I will present comes from the object-oriented language formalisms. (Using

actor terminology) an actor is described solely by its message passing behavior, the messages it accepts and

replies with. Efficiency can he incorporated very natuarally in these systems without sacrificing program

clarity. For example, a matrix is an actor that accepts two kinds of messages, one for storing new values and
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one for requcsts as to values of its elements. Many matrices in applications are sparse, that their va!ues are

zero ior almost all elements. A sparse matrix is most efficiently stored as a hash tablc containing entries for

the non-zero elements. A function that took matrices as arguments in a non-object-orientcd language might

have to check First to see how the matrix is represented to know how to access it. An ohjcct-oriented language

allows the programmer to create a sparse matrix by specifying how it responds to the two kinds of messages

mentioned. After this actor is created, it will behave functionally identically to any other matrix. The rest of

the program is effectively shieldcd from the intricacies of how the individual kinds of matrices are represented

and accessed.

A subset of a pattern-directed invocation system is exactly described by (1) a description of the assertions it is

interested in responding to, and (2) a description of the assertions that get added to the database when one of

the assertions that it is interested in is added to the database. Any method embodied in code that can provide

these two descriptions can be interfaced to the rest of an Ether-like language completely transparently. This

does not mean the assertions it would add to the database are actually present, only that the method supplies

code for deciding if they are virtually present. A method described this way is known as a virtual collection of

assertions.

Incorporating property (1) of a virtual collection of assertions, indicating what assertions it is interested in and

what it does when they are broadcast requires no addiions to the Ether language; sprites (at least in the

current implementation, whose bodies can contain arbitrary Lisp code) already do exactly this. The only new

facility we must supply is one to handle the queries about virtual presence in the database. For this we must

specify a set of procedures that specify (1) the membership questions they are capable of answering, and (2)

how to decide for an individual assertion query whether the assertion is actually present. A possible syntax

for this is:

(when-asked (pattern viewpoint)

-- arbitrary Lisp code-- )

The pattern specifies the class of assertions this procedure can handle. The arbitrary Lisp code returns a list of

all assertions it considers to virtually exist matching the pattern in the given viewpoint.

For example, suppose we had a virtual collection of assertions that modeled a semantic net. It should be

capable, among other things, of deciding that an object known to be human is also a mammal. An entry point

to the semantic net would look something like:

(when (HUMAN "it)
--code to enter x into the semantic net--)

Then for each of the characteristics that the net will answer questions about, we have a when-asked as follows:
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(when-asked (MAMMAL ex)
-- code to check if x is a mammal in the net--)

Then a sprite of the form:

(when (MAMMAL FRED)

do something)

will trigger if FRED was previously known to be a human. From the point of view of the Ether program there

is a very karge collection of assertions available for pattern matching. However, die information is represented

in the most compact and efficient way the programmer could devise.

There are many attributes a virtual collection must have to function correctly. These include ensuring proper

interaction with the viewpoint mechanism and invariance of hehavior with respect to the order of virtual

insertion into the database and request for presence by sprites. I think this approach will make possible a

synthesis of the very general but inefficient Ether mechanisms with efficient Lisp code where it is known how

to construct this code. The MIT Lisp machine with stack groups and alannclock interrupts supplies an

implementation vehicle for Ether that will allow the running of Lisp code without removing the parallel

behaviour of Ether programs.

,i



- 41-

Chapter VII Comparison With Other Work

7.1 Pattern-Directed Invocation Languages

Many of the concepts of pattern-directed invocation languages originate with Planner [201. A subset of

Planner known as Micro-Planner [21] was implemented. It embodied the ideas of antecedent and consequent

theorems or procedures that were invoked automatically by the system. Micro-Planner investigated all goals

by simple depth-first search with backtracking when failure points were reached.

T7here were a couple of interesting bugs discovered in Micro-Planner. It was not possible to distinguish

between wanting to know if a certain fact is known to be true and investing effort in trying to prove it. In Ether

we would say:

(when (INTERESTING FACT)

(Do something))

if we wanted to do something only if the fact was true. If we wanted to start some work attempting to show it

is true we would do:

(broadcast (GOAL (INTERESTING FACT)) ACTIVITY)

In Micro-Planner the two were lumped under the primitive THGOAL. Another, similar, problem with

Micro-Planner was an ambiguity between knowing something is not the case and not knowing if something is

the case. [11] Negation was handled via the primitive THNOT. THNOT succeeded if and only if its argument

failed. For example:

(THNOT (THGOAL (HAS ALPHA-CENTAURI LIFE)))

would, in the absence of any way to prove the goal, succeed. This is the Micro-Planner equivalent of proving

(NOT (HAS ALPHA-CENTAURI LIFE)). Languages developed subsequently, like QA4 1221, Conniver [23], and

Poplar [241 made further contributions. QA4 introduced the notion of contexts as a means of structuring the

Lisp enironment (property lists, variable bindings, etc.). Contexts could form a tree structure; it was possible

to create a context, leave it for a while, and go back to it later on. QA4 was found to be very inefficient and a

subset of it known as QLISP was embedded more directly in Lisp 125). Conniver had a context mechanism

similar to QA4'S. Its principle contribution was a way of controlling backtracking by means of generators and

possibility lists. Instead of the language implementation trying possibilities in some arbitrary order, the

program could manipulate possibilities to try next as data structures, hopefully optimizing its search.

Programs in Conniver become complex beyond the point of understandability. These systems largely failed

because of unexpected interactions between methods that were conceptually unordered (i.e. running in

parallel). Poplcr [241 was an implementation of many of the original Planner ideas in the language Pop-2. It

7
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was the first of these languages to allow methods to be run in parallel, though it was not designed for the

massive parallelism Ether is.

Amord makes use of explicit goal assertions (see section 3.3) and inspired the basic form of their use in Ether.

Amord does not have analogues of activities and viewpoints as primitives. Instead these concepts are

implemented using juslifications and truth maintenance [26]. Justifications provide a more general

mechanism for structuring knowledge than the viewpoints we have used. Truth maintenance systems,

however, do not lend themselves to parallel problem solving. h'lhere is a concept of, at any one time, certain

assertions being visible or invisible to the sprites. The visible assertions correspond to a mutually consistent

collection of beliefs - essentially what might be accessible from a single viewpoint. Parallel problem solving

requires the ability to have more than one viewpoint available at a time.

7.2 Parallel Al Systems

The Hearsay speech-understanding system [27] makes use of decentralized parallel processing in a

fundamental way. It presents many levels of description (raw input, phonological, word, phrase, etc.) that are

constructed in parallel with one another. The basic philosophy of the approach is that each level is inherently

noisy and incomplete, and thus the only way anything can get done is if processing at one level helps to

constrain work at other levels. In this sense their approach is quite similar to ours. Theirs is a more special

purpose system; Hea;say is not a programming language in which such concepts as opponents could be

written.

l.enat (181 presents the most interesting use of notions of resource control that I have seen. His domain is

mathematical discovery; the object is to have the program discover new mathematical concepts from ones it

already knows about. Many possible avenues of discovery are explored in parallel. There is a criterion for

interestingncss of the potential discovery that guides the scheduler in determining what to run next, and for

how long. I.enat's basic control structure is an agenda mechanism with resource limitation information based

on how interesting the result would be if achieved. The important point of agreement between his work and

ours is the observation that you cannot tell how successful a path will be short of trying it; for this reason

many paths should be pursued in parallel to avoid having "all your eggs in one basket." Lenat's thesis inspired

the concepts of processing power and energy in Ether.

* Fahlman [41 discusses a special purpose language and hardware network for doing the kinds of problems

appropriate for semantic nets. He shows that many problems can be solved by doing set intersections that can

be easily simulated by passing tokens through the network. He argues that conventional sequential control

structures cannot do the search that seems to be required to solve these problems in real time as clearly

happens with people. His system is designed to be connected to a problem solving system as a semantic net

subroutine box. Fahlman's approach to combining parallelism with artificial intelligence, in contrast to ours,

is to make brute force searches tractable. We have demonstrated that parallelism can be used to make

1A
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searches more controlled.

Smith [281 introduces a mechanism known as the contract net. The problem solver itself is distributed around

a resource-limlited network. 'l'hc nodes of the network interact with each other in a manner reminiscent of

commercial systems consisting of contractors, contracts, bids, and awards. The bidding protocols result in a

distribution of tasks throughou. the system in a manner that utilizes the available processing resources

reasonably. Contract nets, in contrast with Ether, deal with issues of task distribution on physical hardware.
T[he reasons bids are awarded include such items as load balancing, better suitability of the processor, etc. We

have concerned ourselves only with parallel language design and the uses of parallel processing for artificial

intelligence. A protocol such as contract nets may well be necessary to implement Ether on parallel hardware.

Minsky and Papert [291 arc developing a theory of intelligence they call the "society theory of the mind". The

theory asserts the existence of an enormous number of agents or specialists in certain arcas or points of view.

Intelligence is manifest through the interaction of these agents in a massive parallel scheme. The emphasis in

their scheme seems to be the presence of lots of simple computational elements all "speaking their mind"; the

final behavior of the system seems to represent a compromise between the various agents. They develop the

notion of a critic which bears some resemblance to our opponents. The society theory as it now stands is

metaphorical and suggestive of how a computer system might be implemented to exhibit intelligent behavior
rather than a specific technical proposal.

7.3 Languages for Parallel Processing

There is now a large literature on languages for parallel processing. There are several distinct reasons why

parallel processing languages and systems have been proposed. We will list four of these and then suggest a

fifth proposed by the present work.

1. To make computers useful in an inherently parallel society. We are used to. in our own lives, interacting with

such diverse and distant information sources as banks, schools, governments etc. If we want to integrate

computers into this society, they in turn must be able to deal with these diverse sources. The sequential
machine model is not applicable here. As it was realized computer systems needed these capabilities, schemes

for interrupt handling were developed. These schemes naturally led into a consideration of parallel

processing languages.

2. To provide robust computation. Computing machines, being inherently complex, arc! prone to crrorful

performance. With current hardware trends as they are, a practical solution to this problem is to compute

redundantly making use of several processors. Discrepancies and hardware signaled errors will cause some

backup or reconfiguration operation to happen. This approach has been successful in such critical

applications as the design of jet airplane flight control computers [30J, onboard space vehicle computers [31L.

and remote message relay processors [32].
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3. To increase overall program speed. The idea here is to exploit cheaply available mul'i-processor

architectures by making it convenient to separate certain tasks to be performed in parallel. Friedman and

Wise 1331 note that "applicative" languages, such as pure lisp, can have function execution transparently

done in parallel. They advocate a scheme in which one processor is given charge of the evaluation: as it runs

across subtasks to be handled they are farmed out to other processors. Baker 1341 develops the notion of a

future. Futures give the program writer explicit control over what activities are farmed ouL

4. To increase program understandability As more familiarity is gained with concepts of parallel programming

several researchers have discovered that certain tasks are more easily described as parallel algorithms. These

points are stressed by Hoare 1351 and Kahn and MacQueen [361.

Ether has been used to explore what is perhaps a fifth use of parallel processing: combinatorial implosion.

Useful interaction between running processes can occur that simplify the overall computational effort. These

ideas have applicability in artificial intelligence. Possible application to other areas is suggested by chapter 2

although I know of no other clearly useful algorithm than the one in that chapter.

7.3.1 Svnchronization and Communication

The principle means of communication between processes discussed in the literature is by shared data

struclures modified by programs embodying critical regions. The first development in this area wac the

semaphore by Dijkstra [371. Improvements on the semaphore led to the monitor by Hoare [38] and

subsequently the serializer by Atkinson and Hewitt [391 improved upon in (401. Other schemes for

communication between concurrent processes require information to flow along predesignated topologies.

The Communicating Sequential Processes of Hoare 135] is of this kind. The applicative schemes mentioned

above allow information to flow along the dynamically created paths of expression evaluation only.

Ether presents a model of parallel computation that allows information flow in arbitrary ways without having

shared data structures manipulated inside critical regions. It is instead based on the notion of broadcasting

information that interested parties have the option of intercepting. We have argued already why arbitrary

information traffic between different activities is desirable.

- Certainly, at an implementational level, Ether must support interprocess synchronization. Ether is an

alternative language level formulation that when usable is superior in its ability to suppress unwanted detail.

There are, of course, many problems that require synchronization (such as the "airline reservation system")

and. as such. cannot be handled by the existing Ether system. We have made plausible that useful

communication between parallel processes can be done without synchronization.

i . . .
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